ST. JOSEPH'S COLLEGE OF COMMERCE

(AUTONOMOUS)

LESSON PLAN

2017-2018 ODD SEMESTER

BACHELOR OF BUSINESS ADMINISTRATION

M1 15 MC 503

QUANTITATIVE TECHNIQUES

PREPARED BY:

RAJ. A. SADHWANI

ST.JOSEPH'S COLLEGE OF COMMERCE (AUTONOMOUS) DEPARTMENT OF BUSINESS ADMINISTRATION TEACHING LESSON PLAN BBA 5TH Semester QUANTITATIVE TECHNIQUES

M1 15 MC 503

OBJECTIVE:

- To provide a good foundation in the mathematics of operation research and appreciation of its potential application
- To enable student to grasp the importance of conversion of business problems into mathematical problems and its application in business.

UNIT/ SESSION/ HOURS (TIME REQUIRED)	TOPICS FOR STUDENT PREPARATION (INPUT)	PROCEDURE (PROCESS)	LEARNING OUTCOME (OUTPUT)	ASSESSMENT
Module – 1 : Introduction to OR 4 hours	Definitions-Scope-OR models-Nature- limitations- Applications	 Online Videos Lecture with the help of power Point presentation Discussion 	 To understand the importance of: Origin of OR and its functions. Scope and decision making 	Evaluation through MCQs
Module-2: Introduction to Linear Programming 12 Hours	Concepts-construction of LP model-Problems on formulation- graphical method- simple problems	 Lecture Case Study Discussion Problem solving 	To understand the significance of LPP to the firm and to formulate business problems and model making:	Evaluation through tests and MS excel
Module-3: Simplex Method 12 Hours	Introduction-simplex method-maximization and minimization-Big M-Duality	 Lecture Discussion Problem solving 	To formulate and solve LPP through iterative process and converting primal problem to dual	Evaluation through tests

LESSON PLAN

	İ			i	1
Module-4:	Introduction-methods	•	Lecture	To understand the	
Transportatio	of IBFS and testing for	•	Case Study	significance and	Evaluation
n Problem	optimality-MODI	•	Discussion	application of	through tests
	method	•	Problem solving	transportation model in	and MS Excel
10 Hours				different areas of business	
	Introduction-	•	Lecture	To understand the	Evaluation
Module-5:	Methods-	•	Discussion	significance and	through tests
Assignment	(enumeration-Simplex	•	Case study	application of assignment	and MS Excel
Problem	& transportation-	•	Problem solving	model in business.	
	theory)-Hungarian				
10 Hours	Method				
Module-6:	Introduction-network	•	Lecture	To understand the	Evaluation
Network	analysis-construction	•	Discussion	significance and	through
Analysis	of network diagram-	•	Problem solving	application of network	MCQs, group
	developing project	•	Case Study	techniques in project	activity and
12 Hours	network-PERT-CPM			network and reduction of	tests
				cost and time	

UNIT WISE BREAK UP

LECTURE HOURS: 60

OBJECTIVE:

- To provide a good foundation in the mathematics of operation research and appreciation of its potential application
- To enable student to grasp the importance of conversion of business problems into mathematical problems and its application in business.

Module Number	Торіс	No. of Lecture Hours	Pre- class activity	Pedagogy (in class)	Out of class assignment
Module 1 :	Introduction to OR	4			
1.	– Definition and evaluation of OR	2		Lecture and Discussion	To make short notes on the features
2.	Characteristics and Scope of OR – Management Applications of OR.	2	To go online and view videos on scope of operation research	Lecture , Discussion And video	,scope applications of OR
Module 2	Introduction to Linear Programming	12			
1	Introduction and areas of application of LPP	2	To read about problems on linear programming	Lecture and Illustrations	To write about the meaning definition and scope of LPP
2	Formulation of LPP	4	To learn the steps in formulating an LPP	Illustrations and Work sheet	Short case studies
3	Graphical method of solving LPP	6	To plot single line graphs	Illustrations and Work sheet	LPP Graph problems
Module 3	Simplex	12			
1	Simplex method of solving LPP including Big M method	8	To watch videos on scope of simplex	Illustrations and Work sheet	Simplex problems
2	Concept of Duality	4	To read on the concept of duality	Illustrations and Work sheet	Duality problems
Module 4	Transportation	10			

1.	Definition of the Transportation model – the Transportation Method- Linear Programming Formulation of the Transportation Problem Transshipment model and Methods of calculating IBFS North west corner rule	2	To read and write about transportation model in OR To write about transshipment model	Lecture through power point presentation	Collection of actual transportation data and a study on IBFS Problems on NWCR
3.	Least cost method	1	To study the different methods of IBFS	Lecture and Problems	Problems on LCM
4.	Vogel's approximation method	2	To conduct a comparative study on the methods of IBFS	Lecture and Problems	Problems on VAM
5.	Testing for optimality and improvement of solution	4	To read about MODI method	Lecture and Problems	Problems on MODI method
Module 5	Assignment Problems	10			
1.	Introduction – Mathematical Statement of the problem	2	Nature and scope of assignment	Lecture	Problems on assignment
2.	Solution Methods of Assignment Problem – Enumeration – Transportation & Hungarian Method-	4		Lecture and Problems	Problems on assignment
3.	Maximization in an Assignment problems	2	Areas of application	Lecture and Problems	Problems on assignment
4.	Special cases in an Assignment problems	2	Problems on assignment	Lecture and Problems/cas e study	Problems on assignment
Module 6	Network Analysis	12			
1.	Definition of Projects, Drawing of Diagram	2	Nature and steps in network analysis	Presentation	Network diagrams

2.	СРМ	5	Concept of LS/LF – ES/EF and Floats	Problems	Problems on CPM
3.	PERT	5	Assignments on project crashing	Problems	Problems on PERT

BOOKS FOR REFERENCE:

1. Anderson Sweeney Williams: An Introduction to Management Science Quantitative Approaches to Decision, Thomson.

2. Chacko, George K: Applied Operations Research/Systems Analysis in Hierarchical Decision Making, North Holland Publishing Co.

3. Taha, Hamdy A: Operations Research, Prentice Hall, India.

4. Hiller/Lieberman: Introduction to Operations Research, Tata McGraw Hill.

5. Sharma S D: Operations Research, Kedarnath Ramnath & Co.